Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $

Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology

  • [AIEEE 2009]
  • A

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$

  • B

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$

  • C

    Statement $-1$ is false, Statement $-2$ is true

  • D

    Statement $-1$ is true, Statement $-2$ is false

Similar Questions

Negation of statement "If I will go to college, then I will be an engineer" is -

Which of the following statement is a tautology?

Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is

  • [JEE MAIN 2023]

Negation of the Boolean statement $( p \vee q ) \Rightarrow((\sim r ) \vee p )$ is equivalent to

  • [JEE MAIN 2022]

The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow  q ]$ is

  • [JEE MAIN 2017]